UNIDAD 3. PROCESOS DE CAMBIO DE FORMA



EQUIPO 5 

TEMA 3.1. Fundición, colada al alto vacío, centrífuga y precisión.

Hierro colado o fundición.
La realización de este proceso empieza lógicamente con el molde. La cavidad de este debe diseñarse de forma y tamaño ligeramente sobredimensionado, esto permitirá la contracción del metal durante la solidificación y enfriamiento. Cada metal sufre diferente porcentaje de contracción, por lo tanto si la presión dimensional es crítica la cavidad debe diseñarse para el metal particular que se va a fundir. Los moldes se hacen de varios materiales que incluyen arena, yeso, cerámica y metal.

Proceso:
Se calienta primero el metal a una temperatura lo suficientemente alta para transformarlo completamente al estado líquido, después se vierte directamente en la cavidad del molde. En un molde abierto el metal líquido se vacía simplemente hasta llenar la cavidad abierta. En un molde cerrado existe una vía de paso llamada sistema de vaciado que permite el flujo del metal fundido desde afuera del molde hasta la cavidad, este es el más importante en operaciones de fundición.
Cuando el material fundido en el molde empieza a enfriarse hasta la temperatura suficiente para el punto de congelación de un metal puro, empieza la solidificación que involucra un cambio de fase del metal. Se requiere tiempo para completar este cambio de fase porque es necesario disipar una considerable cantidad de calor. El metal adopta la forma de cavidad del molde y se establecen muchas de las propiedades y características de la fundición. Al enfriarse la fundición se remueve del molde; para ello pueden necesitarse procesamientos posteriores dependiendo del método de fundición y del metal que se usa.
Existen dos  tipos de  hierro colado o fundición: la fundición gris y  la fundición blanca, cuyo nombre lo recibe por el  color característico en la fractura de una pieza colada.


Fundición gris.
Es excelente para obtener piezas complicadas de maquinaria, pues es  muy fluido cuando s e halla fundido y  l lega con bastante facilidad a todas las partes de un molde, además de ser maquinable es duro y frágil.

Fundición blanca.
Es más frágil que la fundición gris se emplea principalmente para obtener el  hierro maleable, el  cual se obtiene recociendo la fundición blanca y  convertirla en un hierro más dúctil y tenaz.

Colada al alto vacío
También conocido como Proceso V, utiliza un molde de arena que se mantiene unido por medio de una presión de vacío en lugar de emplear un aglutinante químico.
Una de sus ventajas es la recuperación de arena  y una desventaja es que es un proceso relativamente lento y no se adapta con facilidad a la mecanización.
Principales aplicaciones:
  • Usada para fabricar piezas pequeñas o muy grandes.
  • Puede utilizarse para materiales metálicos y no metálicos
  • Uniformidad con las propiedades del metal a utilizar.

ETAPAS.
  1. Se precalienta una película delgada de plástico y se coloca sobre una placa de ensamble o modelo de capucha y base por medio de vacío; el modelo tiene agujeros de ventilación pequeños para facilitar la formación del vacío. 
  1. Sobre la placa del modelo se coloca una caja de moldeo de diseño especial y se llena con arena, en la que se forma un bebedero y embudo de vertido. 
  1. Sobre la caja de moldeo se coloca otra película de plástico delgada y se induce un vacío que hace que los granos de arena permanezcan unidos, lo que forma un molde rígido. 

  1. El vacío sobre el modelo del molde se libera para permitir que éste salga del molde. 
  1. Este molde se ensambla con su mitad correspondiente para formar la capucha y la base, y manteniendo el vacío sobre ambas mitades se hace el vertido. La película de plástico se quema con rapidez al contacto del metal fundido. Después de la solidificación, se recupera casi toda la arena para volver a emplearla. 
En fundiciones de producción pequeña, los moldes se alinean en el piso conforme se van haciendo y el metal es tomado entonces en pequeñas cucharas de vaciado. Cuando se requiere mas metal o si un metal más pesado es vaciado, se utilizan cucharas que se diseñaron para ser usadas por dos hombres.
En fundiciones grandes, el problema de manejo de moldes y vaciado de metal se resuelve colocando los moldes sobre transportadores y haciéndolos pasar lentamente por una estación de vaciado.
La estación de vaciado puede ser localizada permanentemente cerca del horno o el metal puede ser traído a ciertos puntos por equipo de manejo aéreo.
 Los transportadores sirven como un almacén de lugar para los moldes, los cuales son transportados a un cuarto de limpieza.

Centrifugado

El metal fundido se vacía sobre el eje de rotación y es obligado a pasar por el molde debido a la fuerza centrífuga.
Es un sistema donde por medio de un tallo se hace llegar metal fundido a racimos de piezas colocadas simétricamente en la periferia. Al poner a girar el sistema se genera fuerza centrífuga la que es utilizada para aumentar la uniformidad del metal que llena las cavidades de los moldes.

Fundición centrífuga
La fundición centrifuga es el proceso de hacer girar el molde mientras se solidifica el metal, utilizando así la fuerza centrífuga para acomodar el metal en el molde. Se obtienen mayores detalles sobre la superficie de la pieza y la estructura densa del metal adquiere propiedades físicas superiores.
Las piezas de forma simétricas se prestan particularmente para este método, aun cuando se pueden producir otros muchos tipos de piezas fundidas. Por fundición centrifuga se obtienen piezas más económicas que por otros métodos.
 Los corazones en forma cilíndrica y rebosaderos se eliminan. Las piezas tienen una estructura de metal densa con todo y las impurezas que van de la parte posterior al centro de la pieza pero que frecuentemente se maquinan. Por razón de la presión extrema del metal sobre el metal, se pueden lograr piezas de secciones delgadas también como en la fundición estática.



Los moldes permanentes se han hecho frecuentemente en la fundición centrifuga de magnesio. Desde entonces las piezas de fundición de magnesio son forzadas nuevamente al molde, las piezas se enfrían más rápidamente y el aire o gas atrapados se eliminan entre el molde y el material.
Se pueden hacer desde anillos de pistón de pocos gramos de peso y rodillo para papel que pesen arriba de 40 toneladas, Blocks de máquinas en aluminio aunque en la fundición centrífuga hay limitaciones en el tamaño y forma de piezas fundidas.

Precisión
Se utiliza para fabricar piezas geométricas complejas con gran precisión de detalle.

También es conocido como moldeo en cascaron o de concha, y es el proceso de fundición en el que el molde es un cascarón delgado (puede ser de 9 mm o de 3/8 de pulgada) hecho de arena y se mantiene cohesionado por medio de un aglutinante de resina termofija.

Ventajas
La superficie es más suave que la del molde convencional de arena verde, y esta suavidad permite un flujo más fácil durante el vertido del metal líquido y un acabado mejor de la superficie del fundido final.

Con éste proceso se puede excluir la necesidad de un maquinado adicional.

Algunos ejemplos de moldeo con concha incluyen a los engranajes, cuerpos de válvulas, boquillas y árboles de levas











EQUIPO 6

Tema 3.2 Formado mecánico, forjado, prensado, estirado, cizallado, doblado, extrusión, embutido y troquelado.

La deformación es únicamente uno de los diversos procesos que pueden usarse para obtener formas intermedias o finales en el metal.
El estudio de la plasticidad está comprometido con la relación entre el flujo del metal y el esfuerzo aplicado. Si ésta puede determinarse, entonces las formas más requeridas pueden realizarse por la aplicación de fuerzas calculadas en direcciones específicas y a velocidades controladas.
Las maquinas, aparatos, herramientas y diversos artículos mecánicos están formados por muchas piezas unidas, tales como: pernos, armazones, ruedas, engranajes, tornillos, etc. Todas estas piezas obtienen su forma mediante diferentes procesos mecánicos (Procesos de conformado), fundición, forja, estirado, laminado, corte de barras y planchas, y por sobre todo mediante arranque de virutas.
El formado de partes con la aplicación de fuerza mecánica, se considera uno de los procesos de formación más importantes, en términos del valor de la producción y del método de producción. El formado de partes se puede efectuar con el material frío (formado en frío) o con material caliente (formado en caliente). Las fuerzas utilizadas para formar las partes pueden ser de tipo de flexión, compresión o cizallado y tensión. Los procesos de formado se pueden clasificar sobre la base de la forma en que se aplica la fuerza.


Curva de Esfuerzo vs Deformación

Debido a que los metales deben ser conformados en la zona de comportamiento plástico, es necesario superar el límite de fluencia (es la deformación  irrecuperable del material) para que la deformación sea permanente. 
Por lo cual, el material es sometido a esfuerzos superiores a sus límites elásticos, estos límites se elevan consumiendo así la ductilidad (pueden deformarse sin romperse) resistentes
Propiedades metálicas en los procesos de conformado

Al abordar los procesos de conformado es necesario estudiar una serie de propiedades metálicas influenciadas por la temperatura, dado que estos procesos pueden realizarse mediante un trabajo en frio, como mediante un trabajo en caliente.


Trabajo en frio

Se refiere al trabajo a temperatura ambiente o menor. Este trabajo ocurre al aplicar un esfuerzo mayor que la resistencia de cedencia original de metal, produciendo a la vez una deformación.

Características

Mejor precisión
Menores tolerancias
Mejores acabados superficiales
Mayor dureza de las partes
Requiere mayor esfuerzo
Trabajo en caliente
Se define como la deformación plástica del material metálico a una temperatura mayor que la de recristalización. La ventaja principal del trabajo en caliente consiste en la obtención de una deformación plástica casi ilimitada, que además es adecuada para moldear partes grandes porque el metal tiene una baja resistencia de cedencia y una alta ductilidad.

Características
Mayores modificaciones a la forma de la pieza de trabajo
Menores esfuerzos
Opción de trabajar con metales que se fracturan cuando son trabajados en  frío

FORJADO

El proceso de forjado fue el primero de los procesos del tipo de compresión indirecta y es probablemente el método más antiguo de formado de metales. Involucra la aplicación de esfuerzos de compresión que exceden la resistencia de fluencia del metal. En este proceso de formado se comprime el material entre dos dados, para que tome la forma deseada.

La mayoría de operaciones de forjado se realiza en caliente, dada la deformación demandada en el proceso y la necesidad de reducir la resistencia e incrementar la ductilidad del metal. Sin embargo este proceso se puede realizar en frío, la ventaja es la mayor resistencia del componente, que resulta del endurecimiento por deformación.
El metal es comprimido entre martillo y un yunque y la forma final se obtiene girando y moviendo la pieza de trabajo entre golpe y golpe. Para producción en masa y el formado de secciones grandes, el martillo es sustituido por un martinete o dado deslizante en un bastidor e impulsado por una potencia mecánica, hidráulica o vapor.
Un dispositivo utiliza directamente el empuje hacia abajo que resulta de la explosión en la cabeza de un cilindro sobre un pistón móvil. Los dados que han sustituido al martillo y al yunque pueden variar desde un par de herramientas de cara plana, hasta ejemplares que tiene cavidades apareadas capaces de ser usadas para producir las formas más complejas.
Forjado.
Si bien, el forjado puede realizarse ya sea con el metal caliente o frío, el elevado gasto de potencia y desgaste en los dados, así como la relativamente pequeña amplitud de deformación posible, limita las aplicaciones del forjado en frío. Un ejemplo es el acuñado, donde los metales superficiales son impartidos a una pieza de metal por forjado en frío. El forjado en caliente se está utilizando cada vez más como un medio para eliminar uniones y por las estructuras particularmente apropiadas u propiedades que puede ser conferida al producto final


LAMINADO
Este es un proceso en el cual se reduce el espesor del material pasándolo entre un par de rodillos rotatorios. Los rodillos son generalmente cilíndricos y producen productos planos tales como láminas o cintas. También pueden estar ranurados o grabados sobre una superficie a fin de cambiar el perfil, así como estampar patrones en relieve. Este proceso de deformación puede llevarse a cabo, ya sea en caliente o en frío.
Laminado.
El trabajo en caliente es usado muy ampliamente porque es posible realizar un cambio en forma rápida y barata. El laminado en frío se lleva a cabo por razones especiales, tales como la producción de buenas superficies de acabado o propiedades mecánicas especiales. Se lamina más metal que el total tratado por todos los otros procesos.

El laminado es un proceso en el que se reduce el espesor de una pieza larga a través de fuerzas de compresión ejercidas por un juego de rodillos, que giran apretando y halando la pieza entre ellos.
El resultado del laminado puede ser la pieza terminada (por ejemplo, el papel aluminio utilizado para la envoltura de alimentos y cigarrillos), y en otras, es la materia prima de procesos posteriores, como el troquelado, el doblado y la embutición.

4 Estirado
Este es esencialmente un proceso para la producción de formas en hojas de metal. Las hojas se estiran sobre hormas conformadas en donde se deforman plásticamente hasta asumir los perfiles requeridos. Es un proceso de trabajo en frío y es generalmente el menos usado de todos los procesos de trabajo.
 
Estirado.

  Estirado de alambre
Una varilla de metal se aguza en uno de sus extremos y luego es estirada a través del orificio cónico de un dado. La varilla que entra al dado tiene un diámetro mayor y sale con un diámetro menor. En los primeros ejemplos de este proceso, fueron estiradas longitudes cortas manualmente a través de una serie de agujeros de tamaño decreciente en una “placa de estirado” de hierro colado o de acero forjado. En las instalaciones modernas, grandes longitudes son estiradas continuamente a través de una serie de dados usando un número de poleas mecánicamente guiadas, que pueden producir muy grandes cantidades de alambre, de grandes longitudes a alta velocidad, usando muy poca fuerza humana. Usando la forma de orificio apropiada, es posible estirar una variedad de formas tales como óvalos, cuadrados, hexágonos, etc., mediante este proceso.




Extrusión
La extrusión es un proceso por compresión en el cual el metal de trabajo es forzado a fluir a través de la abertura de un dado para darle forma a su sección transversal. Ejemplos de este proceso son secciones huecas, como tubos.

Existe el proceso de extrusión directa, extrusión indirecta, y para ambos casos la extrusión en caliente para metales (a alta temperatura).

En este proceso un cilindro o trozo de metal es forzado a través de un orificio por medio de un émbolo, por tal efecto, el metal estirado y extruido tiene una sección transversal, igual a la del orificio del dado.
Hay dos tipos de extrusión, extrusión directa y extrusión indirecta o invertida.
DIRECTA: En el primer caso, el émbolo y el dado están en los extremos opuestos del cilindro y el material es empujado contra y a través del dado.
INDIRECTA:En la extrusión indirecta el dado es sujetado en el extremo de un émbolo hueco y es forzado contra el cilindro, de manera que el metal es extruido hacia atrás, a través del dado.
Extrusión
La extrusión puede llevarse a cabo, ya sea en caliente o en frío, pero es predominantemente un proceso de trabajo en caliente. La única excepción a esto es la extrusión por impacto, en la cual el aluminio o trozos de plomo son extruidos por un rápido golpe para obtener productos como los tubos de pasta de dientes. En todos los procesos de extrusión hay una relación crítica entre las dimensiones del cilindro y las de la cavidad del contenedor, especialmente en la sección transversal.
El proceso se efectúa a una temperatura de 450 a 500 ºC con el fin de garantizar la extrusión.
El diseño de la matriz se hace de acuerdo con las necesidades del mercado o del cliente particular.
La extrusión nos permite obtener secciones transversales sólidas o tubulares que en otros metales sería imposible obtener sin recurrir al ensamble de varias piezas.
CIZALLADO
El corte del metal implica su sostenimiento a un esfuerzo de corte, superior a su resistencia límite, entre filos cortantes adyacentes como se muestra en la figura 22. Conforme el punzón desciende sobre el metal, la presión produce una deformación plástica que tiene lugar como en B en la figura. El metal se somete a un esfuerzo muy alto entre los filos de la matriz y el punzón, y las fracturas se inician en ambos lados de la lámina a medida que continúa la deformación. Cuando se alcanza el límite de resistencia del material la fractura progresa; si el juego es correcto, y ambos filos tienen el mismo aguzado, las fracturas se encuentran en el centro de la lámina como se muestra en C. el valor del juego, que desempeña un papel importante en el diseño de matrices depende de la dureza del material. Para el acero deberá ser del 5 al 8 % del espesor del material por lado. Si se usa un juego inadecuado, las fracturas no coinciden, y en cambio, deben atravesar todo el espesor de la lámina, consumiendo más potencia.
a) Punzón en contacto con la lámina.
b) Deformación plástica.
c) Fractura completa.
Proceso de cizallado de metal con punzón y matriz.
Cizallas de escuadrar
Esta máquina se usa exclusivamente para cizallar láminas de acero y se fabrica tanto `para operación manual como la operada con motor. Se puede colocar lámina con un ancho mayor de 3m. Están provistas de pisadores hidráulicos cada 300mm para prevenir cualquier movimiento de la lámina durante el corte. En la operación, la lámina avanza sobre la bancada de manera que la línea de corte se encuentre bajo la cuchilla. Cuando se acciona el pedal, los pisadores descienden y las cuchillas cortan progresivamente a lo largo de la lámina.

 Doblado y formado
El doblado de metales es la deformación de láminas alrededor de un determinado ángulo. Los ángulos pueden ser clasificados como abiertos (si son mayores a 90 grados), cerrados (menores a 90°) o rectos. Durante la operación, las fibras externas del material están en tensión, mientras que las interiores están en compresión. El doblado no produce cambios significativos en el espesor de la lámina metálica.


Tipos de doblado
Doblado entre formas

En este tipo de doblado, la lámina metálica es deformada entre un punzón en forma de V u otra forma y un dado. Se pueden doblar con este punzón desde ángulos muy obtusos hasta ángulos muy agudos. Esta operación se utiliza generalmente para operaciones de bajo volumen de producción.

Doblado deslizante

En el doblado deslizante, una placa presiona la lámina metálica a la matriz o dado mientras el punzón le ejerce una fuerza que la dobla alrededor del borde del dado.

Este tipo de doblado está limitado para ángulos de 90°.

Se puede efectuar con el mismo equipo que se usa para corte, esto es, prensas operadas con manivela, excéntrico y leva. En donde esté considerado el doblado, el metal se somete a esfuerzos tanto en tensión como de compresión con valores inferiores a la resistencia límite del material, sin un cambio apreciable del espesor. Tal como en una prensa dobladora, el doblado simple implica un doblez recto a lo largo de la lámina de metal.
Para diseñar una sección rectangular a doblar, uno debe determinar cuánto metal se debe dejar para el doblez, pues las fibras exteriores se alargan y las interiores se cortan. Durante la operación, el eje neutro de la sección se mueve hacia el lado de la compresión, lo cual arroja más fibras en tensión. Todo el espesor disminuye ligeramente, el ancho aumenta en el lado de la compresión y se acorta en el otro. Aunque las longitudes correctas para los dobleces se pueden determinar por fórmulas empíricas, están considerablemente influidas por las propiedades físicas del metal. El metal que se ha doblado, retiene algo de su elasticidad original y hay alguna recuperación de elasticidad después de retirar el punzón, a esto se le llama recuperación elástica.
 
Recuperación elástica en operaciones de doblado.

Prensa dobladora
Se usan para doblar, formar, rebordear, repujar, desbarbar y punzonar lámina metálica de bajo calibre. Tales prensas pueden tener espacio para lámina de 6 m de ancho y 16 mm de espesor.
La capacidad de presión requerida de una prensa dobladora para un material dado, se determina por la longitud de la pieza, el espesor del metal y el radio del doblez. El radio mínimo interior de doblez se limita usualmente a un valor igual al espesor del material. Para las operaciones de doblado, la presión requerida varía en proporción a la resistencia a la tensión del material. Las prensas dobladoras tienen carreras cortas, y están equipadas generalmente con un mecanismo impulsor excéntrico.
 
Dobladora.


Embutido
La embutición es un proceso tecnológico que consiste en la obtención de piezas huecas con forma de recipiente a partir de chapas metálicas. Esteproceso permite obtener piezas de formas muy diversas y es una técnica de gran aplicación en todos los campos de la industria.
El proceso de embutido consiste en colocar la lámina de metal sobre un dado y luego presionándolo hacia la cavidad con ayuda de un punzón que tiene la forma en la cual quedará formada la lámina.
El número de etapas de embutición depende de la relación que exista entre la magnitud del disco y de las dimensiones de la pieza embutida, de la facilidad de embutición, del material y del espesor de la chapa. Es decir, cuanto más complicadas las formas y más profundidad sea necesaria, tanto más etapas serán incluidas en dicho proceso.


TROQUELADO
El proceso de troquelado se define al conjunto de operaciones con las cuales sin producir viruta sometemos una lamina plana a ciertas transformaciones a fin de obtener una pieza de forma geométrica propia.
Es una operación en la cual se cortan láminas sometiéndolas a esfuerzos cortantes, desarrollados entre un punzón y una matriz, se diferencia del cizallado ya que este último solo disminuye el tamaño de lámina sin darle forma alguna. El producto terminado del troquelado puede ser la lámina perforada o las piezas recortadas.
Los bordes de herramientas desafilados contribuyen también a la formación de rebabas, que disminuye si se aumenta la velocidad del punzón.


3.3 Desprendimiento de viruta por maquinado convencional y CNC.

El mecanizado por arranque de viruta, es un proceso de mecanizado que consiste en separar material de una pieza fabricada previamente, normalmente por fundición, forja, laminación o por pulvimetalurgia.
El nombre de esta técnica se debe a que el material es arrancado o cortado con una herramienta dando lugar a un desperdicio o viruta. La herramienta consta, generalmente, de uno o varios filos o cuchillas que separan la viruta de la pieza en cada pasada.
Las virutas se diferencian entre sí, dependiendo de la herramienta con que se esté mecanizando.
Procesos de mecanizado por arranque de viruta.
En el mecanizado por arranque de viruta se dan tres tipos de procesos:
Desbaste: eliminación de mucho material con poca precisión; es un proceso intermedio que se utiliza para acercarse a las dimensiones finales de la pieza en un corto periodo de tiempo. Requiere alta velocidad de avance y de corte.
Acabado: eliminación de poco material con mucha precisión; proceso final cuyo objetivo es el de dar el acabado superficial que se requiera a las distintas superficies de la pieza. Se utiliza pensando en tener una superficie con poca rugosidad. Velocidad de avance baja y velocidades de corte altas.
Rectificado o superacabado: Se utiliza para un buen acabado superficial y medidas muy precisas. Las velocidades tanto de corte como de avance son muy altas, desprendiendo partículas por abrasión.
En el proceso de fabricación de piezas por arranque de viruta se pueden conseguir exactitudes del orden de micras,  proporcionando además con unos acabados superficiales excelentes.
Según la definición que acabos de hacer de la técnica de arranque de viruta, queda claro que una de las propiedades más importantes del material de la pieza que se desea mecanizar es la maquinabilidad, que se define como la capacidad de arrancar material de una pieza con un útil de corte o, en otras, la habilidad del palabras material para ser mecanizado.
El proceso de arranque de la viruta, se realiza mediante la penetración de una herramienta de corte, realizando un movimiento relativo entre la pieza que se desea mecanizar y la herramienta.
El arranque de la viruta se produce debido a que el filo de la herramienta produce una deformación elástica en el material, provocando grandes tensiones en la parte del mismo que se convertirá en viruta. Se supera el límite de fluencia del material provocando la rotura y separación de la capa a causa de la deformación plástica sufrida.
Los principales movimientos que nos encontramos en el mecanizado por arranque de viruta de una pieza son:
Corte: Con este movimiento penetra la herramienta en el material, siendo la causante de producir la viruta. Se define mediante la Velocidad de Corte.
Avance: Este movimiento es el realizado al desplazar el punto de aplicación del corte. Se define mediante la Velocidad de Avance.
Alimentación: Se define con el parámetro de Profundidad de Pasada y es el encargado de cortar un espesor del material.
Tipos de Mecanizado por arranque de viruta.
En el mecanizado por arranque de viruta se eliminan trozos de material mediante herramientas con filos perfectamente definidos. Los tipos más habituales son:
Serrado
.Limado
Taladrado
Roscado
Torneado
Fresado
Brochado
Mortajado
Mecanizado por serrado
El serrado es una técnica de mecanizado (que puede ser un proceso manual o realizado mediante máquina herramienta) que consiste en deslizar una hoja de sierra hacia adelante y hacia abajo para realizar un corte en el material.
Maquinado por limado
Es un proceso manual, la forma más antigua de sacar viruta. Consiste en deslizar repetidamente una lima par desbastar el material. Tiene poca capacidad de arranque y se utiliza para ajustes, por lo que se precisa de una mano de obra bastante especializada. Existen diferentes tipos de limas, dependiendo del tamaño de los dientes y de la sección de la lima.
Maquinado por taladrado
Es la operación consistente en realizar agujeros circulares en una pieza. Para ello se monta en la máquina de taladrar una herramienta llamada broca, que gira para penetrar eliminando virutas del material que se quiere taladrar.
Algunos tipos de taladros existentes:
Taladro de mano
Taladro de sobremesa
Taladro de columna
Taladro radial
Maquinado por roscado
Consiste en girar una herramienta de corte introduciéndola en un agujero previo (macho) o girándola en torno a una varilla (terraja) sirviéndose de un utensilio para girarlas con facilidad llamado volvedor.
El roscado puede realizarse manualmente o con máquina herramienta. Si se hace manualmente podremos realizar una rosca dentro de un agujero (rosca hembra), para lo que utilizaremos una herramienta llamada macho de roscar. Para realizar una rosca exterior o rosca macho, se utiliza una herramienta llamada terraja.
También puede roscarse en máquinas como taladros o fresadoras o en máquinas especialmente adaptadas a la realización de roscas (roscadoras), acoplando la herramienta de corte a dicha máquina.
Maquinado por Torneado
Es un procedimiento para crear superficies de revolución por arranque de viruta. Llamamos superficies de revolución a aquellas en las que si hacemos un corte por un plano perpendicular a su eje, cuya sección es circular. La máquina que se utiliza para el torneado se denomina torno.
En esta máquina, la pieza tiene un movimiento circular o rotatorio y la herramienta lineal.
El tipo de piezas que podemos realizar combinando estos tres movimientos principales es muy variado en función del diámetro, la longitud, la complejidad de las formas a mecanizar, etc.
En esta máquina la pieza tiene un movimiento circular o rotatorio y la herramienta lineal.
El movimiento principal en el torneado es el de rotación y lo lleva la pieza a la que vamos a dar forma. Los movimientos de avance de la cuchilla y penetración (meter la cuchilla sobre la pieza
En resumen tenemos 3 movimientos básicos:

 Movimiento de rotación: La pieza se coloca sobre un eje que la hace girar sobre sí misma.

 Movimiento de Avance: La cuchilla avanza paralela a la pieza en un movimiento recto.

 Movimiento de Penetración: La cuchilla penetra contra la pieza cortando parte de ella formándose virutas.

 El control de estos 3 movimientos es básico para dar forma a la pieza sin errores.


La pieza a mecanizar va amarrada mediante un sistema de fijación (plato de garras, pinza, plato liso) y tiene movimiento rotatorio, y la herramienta de corte va fijada a un soporte o torreta y se desplaza en las dos direcciones indicadas para proceder al arranque de material.
Además el movimiento de los ejes del torno puede ser totalmente manual o semiautomático, o puede estar gobernado por un CNC.
Siguiendo estos principios existen diferentes tipos de tornos, que a su vez pueden ir provistos de diferentes accesorios.
Tipos de tornos
Torno paralelo o torno horizontal.
Es una máquina que trabaja en el plano horizontal (X,Y), porque solo tiene estos dos ejes de movimiento, mediante el carro longitudinal que desplaza las herramientas a la pieza y produce torneados cilíndricos, y el carro transversal que se desplaza de forma perpendicular al eje de simetría de la pieza, para realizar la operación denominada refrentado. Este tipo de torno lleva montado un tercer carro, de accionamiento manual y giratorio, conocido como “Charriot” o auxiliar superior, montado sobre el carro transversal, con el cual, inclinado a los grados necesarios, es posible mecanizar conos. Lo característico de este tipo de torno es que se pueden realizar en él mismo, todo tipo de tareas propias del torneado, ya sea taladrado, cilindrado, refrentado, roscado, conos, ranurado, escariado y moleteado entre otros; mediante diferentes tipos de herramientas y útiles intercambiables con formas variadas que se le pueden ir acoplando. Para manejar bien estos tornos se requiere la pericia de operarios muy bien cualificados, ya que el manejo manual de sus carros puede ocasionar errores a menudo en la geometría de las piezas torneadas.
Dentro de los tornos paralelos, se encuentran los tornos de banco (están montados sobre un banco) y los tornos de piso.

Torno frontal (o torno al aire): se emplea para la fabricación de piezas cortas y de gran diámetro.

Torno vertical: Tiene el eje dispuesto verticalmente y el plato giratorio sobre un plano horizontal, lo que facilita el montaje de las piezas voluminosas y pesadas. Es pues el tamaño lo que identifica a estas máquinas, permitiendo el mecanizado integral de piezas de gran tamaño. En los tornos verticales no se pueden mecanizar ejes que vayan fijados entre puntos, porque carecen de contrapunto, así que solamente se mecanizan aquellas piezas que van sujetas con garras adecuadas o con otros sistemas de fijación al plato.


Torno Revolver.
 Es una variedad de torno diseñado para mecanizar piezas de modo que sea posible trabajar varias herramientas en forma secuencial rápida, con el fin de disminuir el tiempo total de mecanizado. La característica principal del torno revolver, es que lleva un carro con la torreta giratoria de forma hexagonal que ataca frontalmente a la pieza que se quiere mecanizar, donde se insertan las diferentes herramientas que conforman el mecanizado de la pieza. Cada una de estas herramientas está controlada con un tope de final de carrera. También dispone de un carro transversal, donde se colocan las herramientas de segar, perfilar, ranurar, etc.

Torno Copiador.
 Es un tipo de torno que es operado con un dispositivo hidráulico y permite el mecanizado de piezas repetidas, siguiendo el perfil de una plantilla de acuerdo a las características de la misma, que reproduce el perfil de la pieza. Este tipo de tornos, se utiliza principalmente para el torneado de ejes de acero, que tienen diferentes escalones de diámetros, que han sido previamente forjados y que tienen poco material excedente. El principio de funcionamiento es que un palpador muy sensible va siguiendo el contorno de la pieza patrón al avanzar el carro principal y transmite su movimiento por un mecanismo hidráulico o magnético a un carro que lleva un movimiento independiente del husillo transversal. Lo más corriente es que el sistema copiador no esté unido fijamente al torno, sino que constituya un aparato aparte que se puede poner o quitar al torno. Hoy en día, este tipo de torno está siendo reemplazado por la máquina CNC.

Torno CNC.
 Es un tipo de torno operado mediante control numérico por computadora. Se caracteriza por ser una máquina herramienta muy eficaz para mecanizar piezas de revolución. Es una máquina ideal para el trabajo en serie y mecanizado de piezas complejas. Las herramientas van sujetas en un cabezal en número de seis u ocho mediante unos portaherramientas especialmente diseñados para cada máquina las cuales entran en funcionamiento de forma programada, y permite a los carros horizontal y transversal trabajar de forma independiente y coordinada, con lo que es fácil mecanizar ejes cónicos o esféricos, así como el mecanizado integral de piezas complejas.
Partes del torno.
En un torno paralelo se puede distinguir cuatro partes principales:
• La bancada
• El cabezal y cabezal móvil
• El contrapunto
• Los carros de movimiento de la herramienta
• La caja Norton de control de velocidades.
Bancada
 Constituye la superficie de apoyo y la columna vertebral de un torno. Su rigidez y alineación afectan la precisión de las partes maquinadas en el torno. La bancada puede ser escotada o entera, según las guías tengan o no un hueco llamado escote, cuyo objeto principal es permitir el torneado de piezas de mayor diámetro. Este escote se cubre con un puente cuando no se requiere el volteo adicional. Encima de la bancada se encuentran las guías prismáticas, las cuales consisten generalmente en dos “V” invertidas y dos superficies planas de apoyo.
 Cabezal
 Está fijo en el lado izquierdo de la bancada del torno y en él van montados generalmente los órganos encargados de transmitir el movimiento del motor al eje. Contiene el husillo que se encuentra sostenido por rodamientos en sus extremos y mueve los diversos dispositivos de sujeción de la pieza de trabajo; es hueco para hacer pasar por él las piezas de trabajo largas y esbeltas. La nariz del husillo es el extremo del husillo que sobresale en el cabezal
El Contrapunto.
 Se usa para soportar el otro extremo de la pieza de trabajo durante el maquinado, o para sostener diversas herramientas de corte, como brocas, escariadores y machuelos. El contrapunto se ubica en el cabezal móvil a la derecha del torno, que se desliza sobre las guías prismáticas y puede fijarse en cualquier posición a lo largo de la bancada. Tiene un husillo deslizante que se mueve mediante una manivela y cuya posición se fija con una palanca.
Carro Principal
 Es el también llamado carro longitudinal. Este se desliza sobre la parte superior de las guías de la bancada.
El Delantal
Es la parte del carro que da hacia abajo, frente al operador. Contiene los engranajes y los embragues de avance que transmiten el movimiento del tornillo patrón y de la barra de cilindrar carro longitudinal y transversal.
El carro entero puede moverse a lo largo de la bancada del torno en forma manual, dando vuelta a la manivela, o en forma automática, embragando los controles de avance automático en el delantal. Una vez en posición, puede fijarse el carro a la bancada apretando el tornillo de fijación correspondiente. Sujeto al delantal se tiene también el reloj para corte de roscas, el cual indica el momento exacto en el que deben embragarse y desembragarse las medias tuercas al estar cortando roscas.     

SUJECIÓN DE PIEZAS
Para la sujeción de piezas se usan diferentes dispositivos entre los cuales se encuentran los platos de sujeción universal que tienen tres mordazas autocentrantes que se mueven con una sola llave  o los platos independientes en los que cada mordaza es ajustada con una entrada de llave autónoma.
Cuando la pieza a tornear es muy larga se monta en la bancada una luneta o soporte móvil que permite soportar las piezas de trabajo cerca del punto de corte.
Operaciones principales en el torno.
El torno paralelo el más utilizado debido principalmente a las diversas operaciones que pueden ejecutarse en él mismo, tales como:
1. Cilindrado o desbastado
2. Refrentado o careado
3. Cilindro cónico
4. Roscado
5. Taladrado.
Taladrado y Alesado
Los trabajos de alesado, corte de roscas y escariado que se hacen en torno comienzan generalmente con la localización y el taladrado de un agujero. Alesado es el proceso de agrandar y perfeccionar un agujero existente o uno taladrado. Para hacer el alesado, el agujero taladrado puede ser de 1/32 a 1/16 de pulgada menor que el diámetro terminado, dependiendo de la situación, este taladrado inicial se puede hacer con broca o escariadora.
Tarrajado y machuelado
El tarrajado y machuelado de una pieza de trabajo montada en un mandril es un medio rápido y exacto para producir roscas externas e internas respectivamente. El tarrajado consiste en hacer pasar la pieza de trabajo por una herramienta llamada tarraja que tiene gravada una rosca de determinado paso y diámetro en su interior; para que esta tome en su contorno la forma deseada y así conformar roscas externas. El machuelado sirve para hacer roscas internas, enfrentando la pieza de trabajo al machuelo con el paso y diámetro deseado, para que este quede impreso en el interior de la pieza
Moleteado 
Un moleteado es una impresión resaltada sobre la superficie de una pieza de trabajo que se produce por medio de dos rodillos templados, que tienen en altorrelieve rayas inclinadas que dejan en la pieza una impresión en cruz. Se usa para mejorar la apariencia de una parte y para proporcionar una buena superficie de agarre, como en palancas y mangos de herramientas. El moleteado recto se emplea para aumentar el tamaño de una parte para hacer ajustes de presión en aplicaciones de servicio ligero.
Maquinado por fresado
Es un procedimiento consistente en el corte del material con una herramienta rotativa que puede tener uno o varios filos. El corte se realiza combinando el giro de la herramienta con el desplazamiento, bien sea de la misma herramienta o de la pieza a trabajar.
Depende del diseño de la máquina que lo que se desplace sea la herramienta, la mesa, o que combine el desplazamiento de ambos.
Este desplazamiento se realiza en cualquier dirección de los tres ejes posibles en los que se puede desplazar la mesa, a la que va fijada la pieza que se mecaniza.
La máquina que se utiliza se llama fresadora, ésta es una máquina dotada de una herramienta característica, denominada fresa, que animada de un movimiento de rotación, mecaniza superficies en piezas que se desplazan con movimiento rectilíneo bajo la herramienta.
Partes de la fresadora
            En las máquinas de fresar usadas en los talleres de construcciones mecánicas, podemos distinguir las siguientes partes:
Bastidor Es una especie de cajón de fundición, de base reforzada y generalmente, rectangular. Por medio del bastidor se apoya la máquina en el suelo. Es el sostén de los demás órganos de la freidora.
Husillo principal Es uno de los elementos esenciales de la máquina, puesto que es el que sirve de soporte a la herramienta y le da movimiento. El husillo recibe el movimiento a través de la caja de velocidades, que a su vez es movido por el motor.
Caja de velocidades del husillo Tiene una serie de engranajes que pueden acoplarse según diferentes relaciones de transmisión. Esto permite una extensa gama de velocidades del husillo principal. El accionamiento de esta caja es independiente del que efectúa la caja de avances.
Mesa longitudinal Es el punto de apoyo de las piezas que van a ser trabajadas. Estas piezas se pueden montar directamente o por medio de accesorios de fijación. La mesa tiene ranuras en forma de T para alojar los tornillos de fijación.
Carro transversal Es una pieza de fundición de forma rectangular, en cuya parte superior se desliza y gira la mesa en un plano horizontal. En la base inferior está ensamblado a la consola, sobre la que se desliza manualmente por medio de tuerca y tornillo, o automáticamente, por medio de cajas de avance. Se puede inmovilizar.
Consola Sirve de apoyo a la mesa y sus mecanismos de accionamiento. Se desliza verticalmente en el bastidor a través de una guía por medio de un tornillo telescópico y una tuerca fija.
 Caja de avances Es un mecanismo construido por una serie de engranajes ubicados en el interior del bastidor. Recibe el movimiento directamente del accionamiento principal de la máquina. Se pueden establecer diferentes velocidades de avance. El enlace del mecanismo con el husillo de la mesa se realiza a
Si el eje de la fresa se halla dispuesto paralelamente a la superficie a mecanizar, el fresado se denomina cilíndrico. En este caso, la fresa puede girar en sentido contrario al avance, denominándose fresado normal o en el mismo sentido, que es el fresado en concordancia. Cuando el eje de la fresa es perpendicular a la superficie de la pieza que se mecaniza, el fresado se denomina frontal.

En general los movimientos de trabajo de la fresadora son:
 - Movimiento de corte: por rotación de la fresa.
 - Movimiento de avance: por desplazamiento rectilíneo de la pieza.
- Movimiento de profundidad de pasada: por desplazamiento vertical de la pieza.


Las fresadoras se pueden clasificar de diferentes formas:
según la configuración de sus diferentes partes móviles,
según su número de ejes,
según la orientación del cabezal principal (donde va fijada la herramienta de corte)
Tipos de fresadoras.
Maquina Fresadora Horizontal: Esta máquina se presta para toda clase de trabajos. Su característica es el husillo de fresar dispuesto horizontalmente
 Máquina de Fresar Vertical: Con esta máquina se realizan principalmente trabajos de fresado frontal. El husillo de fresar está dispuesto verticalmente en el cabezal porta fresa. Este cabezal puede girar de tal modo que puede adoptar una posición inclinada. Los mecanismos de accionamiento principal y de avance no se diferencian de la Fresadora Horizontal.
Máquina de fresar Universal: La característica principal de esta máquina es que tiene un husillo principal para el acoplamiento de ejes portaherramientas horizontales y un cabezal que se acopla a dicho husillo y que convierte la máquina en una fresadora vertical, además, la mesa de fresar puede girar hacia la derecha o hacia la izquierda. Con esto se hace posible la ejecución de muchos más trabajos, como por ejemplo, el fresado de ranuras helicoidales
 Fresadoras Circulares: Tienen una amplia mesa circular giratoria, por encima de la cual se desplaza el carro portaherramientas, que puede tener uno o varios cabezales verticales, por ejemplo, uno para operaciones de desbaste y otro para operaciones de acabado. Además pueden montarse y desmontarse piezas en una parte de la mesa mientras se mecanizan piezas en el otro lado.
Máquina de Fresar Paralela: Se utiliza para trabajar piezas muy pesadas
Máquina de Fresar Planeadora: Se presta para trabajos en serie.  Las Fresadoras de Planear tienen frecuentemente varios husillos de fresar. Otras Máquinas de Fresar son: Fresadora de roscas, la fresadora de ruedas dentadas, las fresadoras de copiar y las Fresadoras CNC
PROCESO DEL TRABAJO AL FRESAR 
Las virutas son arrancadas en el fresado por medio de la rotación de la fresa cuyos filos están dispuestos en forma circunferencial. La fresa es una herramienta de varios filos. Durante el fresado cada filo no está nada más que durante una parte de la revolución de la fresa, dedicado al arranque de viruta, el resto del tiempo el filo gira en vacío y puede refrigerarse.
El proceso de fresado puede ser:
Fresado Cilíndrico: el eje de la fresa se encuentra dispuesta paralelamente a la superficie de trabajo. En el fresado cilíndrico la máquina experimenta una carga irregular en virtud de la forma de coma de la viruta, es difícil evitar un ligero golpeteo en la periferia de la herramienta a cada revolución de la misma.

Fresado Frontal: el eje de la fresa es perpendicular a la superficie de trabajo, la fresa corta con los dientes de la periferia y con los dientes frontales. En este fresado cada diente de la herramienta arranca una viruta de espesor uniforme, por esta razón la carga sobre la herramienta es uniforme y se obtiene una superficie más lisa.
Fresado en concordancia y fresado en oposición En el fresado en concordancia, la herramienta gira en el mismo sentido en el que avanza la pieza. Este tipo de fresado es también conocido como fresado hacia abajo debido a que, cuando el eje de giro de la fresa es horizontal, la componente vertical de la fuerza de corte está dirigida hacia la abajo.

En el fresado en oposición, también conocido como fresado hacia arriba, ocurre lo contrario, es decir, la herramienta gira en sentido contrario al avance de la pieza y la componente vertical de la fuerza de corte se dirige hacia arriba.
Para obtener una buena calidad en la superficie mecanizada, el fresado en concordancia es el método de fresado más recomendable siempre que la máquina, la herramienta y los utillajes lo permitan. En el fresado en oposición, el espesor de la viruta y la presión de corte aumentan según avanza la herramienta, por lo que se requiere menos potencia para la máquina. Sin embargo, este método presenta varios inconvenientes. Produce vibraciones en la máquina y una peor calidad superficial del mecanizado. Hay que tener cuidado con la sujeción de la pieza porque el empuje de la herramienta tenderá a expulsarla del amarre. En el fresado en concordancia, los dientes de la fresa inician el corte de la pieza con el máximo espesor de viruta, por lo que se necesita mayor esfuerzo de corte que en el fresado en oposición. Cuando la fresa se retira de la pieza, el espesor de la viruta es menor y por tanto la presión de trabajo es menor, produciendo así un mejor acabado de la superficie mecanizada. Este método de fresado requiere máquinas de mayor potencia y rigidez. Este fresado favorece la sujeción de la pieza porque tiende a apretarla hacia abajo.
Maquinado por brochado
El brochado consiste en pasar una herramienta rectilínea de filos múltiples, llamada brocha, sobre la superficie a tallar en la pieza, ya sea exterior o interior, para darle una forma determinada.
El brochado se realiza normalmente de una sola pasada mediante el avance continuo de la brocha, la cual retrocede a su punto de partida después de completar su recorrido.
La brocha trabaja por arranque progresivo de material mediante el escalonamiento racional de los dientes, determinado por la forma cónica de la herramienta. La forma de la herramienta permite obtener formas que por otro procedimiento serían muy costosas o imposibles.
El movimiento de corte (C) lo produce la brocha al avanzar, mientras la pieza está fija; la profundidad de pasada (P) la proporciona la propia herramienta.
La brochadora es una máquina relativamente moderna y se emplea en series largas ya que la brocha es una herramienta cara.
Maquinado por mortajado
La mortajadora, también llamada limadora vertical, es una máquina cuya herramienta, dotada de movimiento rectilíneo y alternativo vertical, arranca viruta al moverse sobre piezas fijadas sobre la mesa de la máquina.
Las mortajadoras, y en general todas las máquinas herramientas de movimiento alternativo, tienen poco rendimiento. También cabría añadir que los trabajos propios de la mortajadora pueden realizarse en piezas pequeñas en otras máquinas como la fresadora, y debido a ello esta máquina no ha adquirido el desarrollo y perfección de la mayoría de las máquinas herramientas.
Las mortajadoras se crearon principalmente para la ejecución de ranuras, generalmente chaveteros, en poleas, volantes, etc., pero también se emplean para contornear matrices, levas, placas, para tallar engranajes, etc.

CONTROL NUMÉRICO COMPUTARIZADO
 ¿QUÉ ES EL CNC?
 El término CNC se refiere al control numérico de máquinas, generalmente máquinas herramientas. Normalmente este tipo de control se ejerce a través de una computadora y la máquina está diseñada a fin de obedecer las instrucciones de un programa dado, lo cual se ejerce a través del proceso siguiente:
 Dibujo del producto
 Programación
 Interfase
 Máquinas-herramientas CNC.

MAQUINAS CNC.
Torno de control numérico o torno CNC se refiere a una máquina herramienta del tipo torno que se utiliza para mecanizar piezas de revolución mediante un software de computadora que utiliza datos alfa-numéricos, siguiendo los ejes cartesianos X,Y,Z. Se utiliza para producir en cantidades y con precisión porque la computadora que lleva incorporado control para la ejecución de la pieza.
Un torno CNC puede hacer todos los trabajos que normalmente se realizan mediante diferentes tipos de torno como paralelos, copiadores, revólver, automáticos e incluso los verticales. Su rentabilidad depende del tipo de pieza que se mecanice y de la cantidad de piezas que se tengan que mecanizar en una serie.
Funcionamiento
Los ejes X, Y y Z pueden desplazarse simultáneamente en forma intercalada, dando como resultado mecanizados cónicos o esféricos según la geometría de las piezas.
Las herramientas se colocan en portaherramientas que se sujetan a un cabezal que puede alojar hasta 20 portaherramientas diferentes que rotan según el programa elegido, facilitando la realización de piezas complejas.
En el programa de mecanizado se pueden introducir como parámetros la velocidad de giro de cabezal portapiezas, el avance de los carros longitudinal y transversal y las cotas de ejecución de la pieza. La máquina opera a velocidades de corte y avance muy superiores a los tornos convencionales por lo que se utilizan herramientas de metal duro o de cerámica para disminuir la fatiga de materiales.
Arquitectura general de un torno CNC
Las características propias de los tornos CNC respecto de un torno normal universal son las siguientes:
Motor y cabezal principal
Este motor limita la potencia real de la máquina y es el que provoca el movimiento giratorio de las piezas, normalmente los tornos actuales CNC equipan un motor de corriente continua, que actúa directamente sobre el husillo con una transmisión por poleas interpuesta entre la ubicación del motor y el husillo, siendo innecesario ningún tipo de transmisión por engranajes.
Estos motores de corriente continua proporcionan una variedad de velocidades de giro casi infinita desde cero a un máximo determinado por las características del motor, que es programable con el programa de ejecución de cada pieza. Muchos motores incorporan dos gamas de velocidades uno para velocidades lentas y otro para velocidades rápidas, con el fin de obtener los pares de esfuerzo más favorables. El husillo lleva en su extremo la adaptación para los correspondientes platos de garra y un hueco para poder trabajar con barra.
Las características del motor y husillo principal de un torno CNC pueden ser las siguientes:
Diámetro agujero husillo principal: 100 mm
Nariz husillo principal: DIN 55027 Nº 8 / Camclock Nº 8
Cono Morse Nº 2
Gama de velocidades: 2
Velocidad variable del husillo: I: 0-564 rpm II: 564-2000 rpm
Potencia motor: 15 kwBancada y carros desplazables

Husillo de bolas con rosca redondeada rectificada.
Para poder facilitar el desplazamiento rápido de los carros longitudinal y transversal, las guías sobre las que se deslizan son templadas y rectificadas con una dureza del orden de 450 HB. Estas guías tienen un sistema automatizado de engrase permanente.
Los husillos de los carros son de bolas templadas y rectificadas asegurando una gran precisión en los desplazamientos, estos husillos funcionan por el principio de recirculación de bolas, mediante el cual untornillo sin fin tiene un acoplamiento a los respectivos carros. Cuando el tornillo sin fin gira el carro se desplaza longitudinalmente a través de las guías de la bancada. Estos tornillos carecen de juego cuando cambian de sentido de giro y apenas ofrecen resistencia. Para evitar los daños de una colisión del carro con algún obstáculo incorporan un embrague que desacopla el conjunto y detiene la fuerza de avance.
Cada carro tiene un motor independiente que pueden ser servomotores o motores encoder que se caracterizan por dar alta potencia y alto par a bajas revoluciones. Estos motores funcionan como un motor convencional de Motor de corriente alterna, pero con un encoder conectado al mismo. El encoder controla las revoluciones exactas que da el motor y frena en el punto exacto que marque la posición programada de la herramienta.
Por otra parte la estructura de la bancada determina las dimensiones máximas de las piezas que se puedan mecanizar. Ejemplo de las especificaciones de la bancada de un torno CNC:
Altura entre puntos: 375 mm
Diámetro admitido sobre bancada: 760 mm
Diámetro sobre carro longitudinal 675
Diámetro admitido sobre carro transversal. 470 mm
Avance de trabajo ejes Z, X. 0-10000 mm/min
Desplazamientos rápidos ejes Z, X 15/10 m/min
Fuerza empuje longitudinal 9050 N
Fuerza empuje transversal 9050 N
Estructura de un programa de torneado
La estructura de un programa de torneado está conformado por una serie de secuencias y funciones donde se van programando las tareas que debe realizar la máquina de acuerdo con los parámetros de la pieza y las condiciones tecnológicas de su mecanizado. Existen varios fabricantes de ordenadores para tornos. En este artículo para ejemplificar un tipo de programación se toma referencia el modelo 8050 que fabrica la empresa española Fagor.
Número de secuencia N
Se denomina secuencia al conjunto de órdenes no contradictorias que se pueden dar de una sola vez a la máquina. Se identifican por la letra N, y en un torno normal se pueden dar hasta 9999 órdenes sucesivas. Si el programa no es muy largo se pueden numerar de 10 en 10, por si es necesario introducir alguna orden complementaria no prevista, así tendremos N10, N20, N30, etc. o podríamos tener, N10, N11, N20, etc.
Funciones preparatorias G
Bajo la letra G acompañada de una cifra se agrupan una gran variedad de funciones que permiten al torno realizar las tareas adecuadas y necesarias para su trabajo.
Hay cinco tipos básicos de funciones preparatorias:
Funciones de movilidad.
Funciones tecnológicas.
Funciones de conversión.
Funciones de mecanizado especiales.
Funciones modales.
1- Funciones de movilidad Las funciones de movilidad más importantes son las siguientes:
G00Desplazamiento rápido. Indica el desplazamiento más rápido posible del carro portaherramientas, desde el punto de referencia al punto donde inicia el trabajo cada herramienta. Hay que tener especial cuidado en el uso de esta función ya que la trayectoria no es controlada por el usuario sino que el torno actúa basándose únicamente en la máxima velocidad de desplazamiento. Nunca se mecaniza con ella. Sólo actúa al inicio del programa, cada vez que se produce un cambio de herramienta, y al final del programa en el retorno al punto de referencia.
G01Interpolación lineal. Indica que la herramienta se está desplazando al avance de trabajo programado, permitiendo las operaciones clásicas de cilindrado y refrentado así como el mecanizado de conos.

Mecanización con interpolación circular.
G02 Interpolación circular a derechas (sentido horario) Se utiliza cuando es necesario mecanizar zonas esféricas o radiales con velocidad controlada.
G03Interpolación circular a izquierdas (sentido antihorario). Se utiliza cuando es necesario mecanizar zonas esféricas vacías, o radios a izquierdas.
Hay otras funciones de movilidad G, menos importantes y que están en función del equipo que se instale en la máquina.
2- Funciones tecnológicas Las funciones tecnológicas son las que se refieren a la forma de programar la velocidad del cabezal y el avance de trabajo. La velocidad de rotación del cabezal se puede programar a las revoluciones por minuto que se desee, para lo cual se antepondrá la función G97, o se puede programar para que gire a una velocidad de corte constante en m/min. En tal caso se indica con la función G96. Igual sucede con el avance de trabajo, si se desea programar el avance en mm/rev, se antepone la función G95 y si se desea trabajar en mm/min se antepone la función G94.
3- Funciones de conversión La función más importante de este grupo es la que corresponde al traslado de origen para situar el cero pieza que se realiza mediante la función G59. también existen funciones si el acotado está en pulgadas o en milímetros. Si bien ya tiene preestablecida la que se va a usar normalmente. Otro caso de conversión es si se programa con cotas absolutas o cotas incrementales.
4- Funciones de mecanizados especiales. La más popular de estas funciones es la que corresponde a un ciclo de roscado representada por la función G33. Otras funciones de este tipo son las de refrentados, taladrados, roscado con macho, escariado, etc.
5- Funciones modales. En los programas de CNC, existen funciones que, una vez programadas, permanecen activas hasta que se programa una función contraria, o el programa se termina. Estas funciones son las llamadas funciones modales. En un bloque se pueden programar tantas funciones como se desee, siempre que no sean incompatibles entre ellas. Por ejemplo no se pueden programar en un bloque las funciones G00 y G01.
Programación de cotas X-Z
Se entiende por programación de cotas la concreción en el programa de los recorridos que tienen que realizar las herramientas para conformar el perfil de la pieza de acuerdo con el plano de la misma. La programación se puede hacer mediante coordenadas X y Z o coordenadas polares. También mediante la función G adecuada se pueden programar las cotas tanto en milímetros como en pulgadas. Para hacer una programación correcta de las cotas hay que conocer bien los excedentes de material que hay que remover, para determinar el número de pasadas que hay que realizar así como la rugosidad superficial que deben tener los acabados mecanizados, así como la forma de sujetar la pieza en la máquina y la rigidez que tenga
Programación de la herramienta T-D
Los tornos de control numérico tienen un tambor frontal donde pueden ir alojados un número variable de herramientas generalmente de 6 a 20 herramientas diferentes. Las herramientas se programan con una letra T seguida del número que ocupa en el tambor, por ejemplo T2, la letra T, es la inicial de esta palabra en inglés (tool). Como cada herramienta tiene una longitud diferente y un radio en la punta de corte también diferente es necesario introducir en el programa los valores correctores de cada herramienta, para que el programa pueda desarrollarse con normalidad.
Aparte de la longitud de la herramienta existen unas funciones G para introducir una corrección de acuerdo al valor que tenga el radio de la herramienta en la punta de corte. La compensación del radio de la herramienta tiene una gran importancia en el mecanizado, especialmente en piezas que contengan perfiles irregulares. Las placas de herramientas de torno tienen siempre puntas redondeadas, de esta forma son más rígidas. Cuanto menor es el radio de la punta mayor tendencia presenta a astillarse.
Factores tecnológicos F-S
Los factores tecnológicos que hay que tener a la hora de elaborar un programa son los siguientes:
Material de la pieza a mecanizar.
Tolerancia de cotas y calidad superficial del mecanizado.
Estructura de la pieza a mecanizar.
Estos factores son los que van a determinar entre otras cosas los siguientes elementos.
Velocidad de corte la velocidad de corte se programa mediante la letra S, inicial de la palabra inglesa (speed) que significa velocidad, y una cifra que puede referirse a un valor constante de velocidad de corte que queremos mantener en todo el mecanizado o a una cifra que corresponde a las revoluciones por minuto del cabezal de acuerdo con la velocidad de corte que se funcione y el diámetro de la pieza que se esté torneando. La elección de un sistema de programa u otro se realiza mediante la función G que corresponda.
Profundidad de pasada este concepto viene determinado por la cantidad de viruta que se tenga que remover y del grado superficial que se tenga que obtener y de la tolerancia de mecanizado del plano.
Avance de trabajo El avance de trabajo de la herramienta se representa por la letra F inicial de la palabra inglesa (Feed) que significa avance, seguida de una cifra que puede referirse al avance de la herramienta expresado en mm/rev o en mm/min. En el torneado lo más común es programar el avance expresado en mm/rev. La elección de un sistema de programa u otro se realiza con la función G que corresponda.
Refrigerante en muchos mecanizados es necesario refrigerar la zona donde está actuando la herramienta, esta función se programa mediante una función auxiliar M.
Fijación de la pieza en el cabezal en las máquinas de control numérico es muy importante asegurarse que la fijación de la pieza sea lo suficientemente rígida como para poder soportar las tensiones del mecanizado, asimismo se debe prever un sistema rápido y seguro de anclaje de la pieza para eliminar tiempos muertos inactivos de la máquina.
Funciones auxiliares M
Las funciones auxiliares sirven para establecer el funcionamiento de la máquina. Tales como encendido y parada del accionamiento principal o fin del programa.
Ventajas y desventajas de los tornos CNC frente a los convencionales
Ventajas:
Permiten obtener mayor precisión en el mecanizado.
Permiten mecanizar piezas más complejas.
Se puede cambiar fácilmente de mecanizar una pieza a otra.
Se reducen los errores de los operarios.
Cada vez son más baratos los tornos CNC.
Se reducen tiempos de mecanizado.
Como desventajas se pueden indicar las siguientes:
Necesidad de realizar un programa previo al mecanizado de la primera pieza.
Coste elevado de herramientas y accesorios lo que implica una elevada inversión.
Conveniencia de tener una gran ocupación para la máquina debido a su alto coste.
Formación de viruta
El torneado ha evolucionado tanto que ya no se trata tan solo de arrancar material a gran velocidad, sino que los parámetros que componen el proceso tienen que estar estrechamente controlados para asegurar los resultados finales de economía calidad y precisión.
La forma de tratar la viruta se convierte en un proceso complejo, donde intervienen todos los componentes tecnológicos del mecanizado, para que pueda tener el tamaño y la forma que no perturbe el proceso de trabajo. Si no fuera así se acumularían rápidamente masas de virutas largas y fibrosas en el área de mecanizado que formarían madejas enmarañadas e incontrolables.
La forma que toma la viruta se debe principalmente al material que se está cortando y puede ser de material dúctil y también quebradizo y frágil.
El avance con el que se trabaje y la profundidad de pasada, son bastante responsables de la forma de viruta, y cuando no se puede controlar con estas variables hay que recurrir a elegir la herramienta que lleve incorporado un rompevirutas eficaz.16 mayor eficacia que un torno normal es mayor rapidez.
Fresadoras CNC
 Las fresadoras CNC son muy similares a las convencionales y poseen las mismas partes móviles, es decir, la mesa, el cabezal de corte, el husillo y los carros de desplazamiento lateral y transversal. Sin embargo, no presentan palancas ni manivelas para accionar estas partes móviles, sino una pantalla inserta en un panel repleto de controles y una caja metálica donde se alojan los componentes eléctricos y electrónicos que regulan el funcionamiento de motores destinados a efectuar el mismo trabajo que hacían las palancas y manivelas de las viejas máquinas. Entre estos componentes se encuentra el CNC, que es una computadora principalmente responsable de los movimientos de la fresadora a través del correspondiente software. La combinación de electrónica y motores o servomotores de accionamiento es capaz de lograr todas las operaciones de fresado posibles.
Para comprender el control de movimientos que ejerce el CNC, vamos a repasar brevemente cómo funciona una fresadora convencional.
Fresadora CNC
La figura esquematiza una fresadora típica. En este tipo de máquinas, las manivelas accionan las partes móviles en forma manual para que la herramienta de corte (fresa) se desplace linealmente en por lo menos tres ejes, que reciben el nombre de ejes principales:
Eje X: horizontal y paralelo a la superficie de sujeción de la pieza. Se asocia con el movimiento en el plano horizontal longitudinal de la mesa de fresado.
Eje Y: forma un triedro de sentido directo con los ejes X y Z. Se asocia con el movimiento en  el plano horizontal transversal de la mesa de fresado.
Eje Z: donde va montada la fresa, es el que posee la potencia de corte y puede adoptar distintas posiciones según las posibilidades del cabezal. Se asocia con el desplazamiento vertical  del cabezal de la máquina.
Si la fresadora dispone de una mesa fija, estos tres desplazamientos son ejecutados por el cabezal.
Ahora bien, es claro que el fresado de piezas más complejas requerirá un mayor número de ejes cuya trayectoria no sea únicamente lineal, sino también rotatoria. En este punto es donde el concepto de CNC entra en juego, dando origen a una multiplicidad de ejes complementarios controlados de forma independiente y determinados por el movimiento de mesas giratorias y/o cabezales orientables. Esto origina una diversidad de modelos de máquinas que posibilitan el mecanizado de la pieza por diferentes planos y ángulos de aproximación.
En la siguiente figura vemos un ejemplo de fresadora CNC con sus componentes básicos y ejes principales (X, Y, Z) y complementarios (B, W).
Componentes de una fresadora CNC
1 – Columna
2 – Pieza de trabajo
3 – Mesa de fresado, con desplazamiento en los ejes X e Y
4 – Fresa
5 – Cabezal de corte que incluye el motor del husillo
6 – Panel de control CNC
7 – Mangueras para líquido refrigerante
X, Y, Z – Ejes principales de desplazamiento
B – Eje complementario de desplazamiento giratorio del cabezal de corte
W – Eje complementario de desplazamiento longitudinal del cabezal de corte
La función primordial del CNC es la de controlar los desplazamientos de la mesa, los carros transversales y longitudinales y/o el husillo a lo largo de sus respectivos ejes mediante datos numéricos. Sin embargo, esto no es todo, porque el control de estos desplazamientos para lograr el resultado final deseado requiere el perfecto ajuste y la correcta sincronización entre distintos dispositivos y sistemas que forman parte de todo proceso CNC. Estos incluyen los ejes principales y complementarios, el sistema de transmisión, los sistemas de sujeción de la pieza y los cambiadores de herramientas, cada uno de los cuales presenta sus modalidades y variables que también deben estipularse adecuadamente.
Este riguroso control lo efectúa un software que se suministra con la fresadora y que está basado en alguno de los lenguajes de programación numérica CNC, como ISO, HEIDENHAIN, Fagor, Fanuc, SINUMERIK y Siemens. Este software contiene números, letras y otros símbolos -por ejemplo, los códigos G y M– que se codifican en un formato apropiado para definir un programa de instrucciones capaz de desarrollar una tarea concreta. Los códigos G son funciones de movimiento de la máquina (movimientos rápidos, avances, avances radiales, pausas, ciclos), mientras que los códigos M son las funciones misceláneas que se requieren para el maquinado de piezas, pero no son de movimiento de la máquina (arranque y paro del husillo, cambio de herramienta, refrigerante, paro de programa, etc.). De esto se desprende que para operar y programar este tipo de máquinas se requieren conocimientos básicos en operaciones de mecanizado en equipo convencional, conocimientos elementales de matemática, dibujo técnico y manejo de instrumentos de medición.
En la actualidad el uso de programas CAD (diseño asistido por computadora) y CAM(fabricación asistida por computadora) es un complemento casi obligado de toda máquina CNC, por lo que, generalmente, la manufactura de una pieza implica la combinación de tres tipos de software:
CAD: realiza el diseño de la pieza.
CAM: calcula los desplazamientos de los ejes para el maquinado de la pieza y agrega las velocidades de avance, velocidades de giros y diferentes herramientas de corte.
Software de control (incluido con la máquina): recibe las instrucciones del CAM y ejecuta las órdenes de desplazamiento de las partes móviles de la fresadora de acuerdo con dichas instrucciones.
El siguiente video ilustra la manufactura de una pieza mediante CAD/CAM:
Las fresadoras CNC están adaptadas especialmente para el fresado de perfiles, cavidades, contornos de superficies y operaciones de tallado de dados, en las que se deben controlar simultáneamente dos o tres ejes de la mesa de fresado. Aunque, dependiendo de la complejidad de la máquina y de la programación efectuada, las fresadoras CNC pueden funcionar de manera automática, normalmente se necesita un operador para cambiar las fresas, así como para montar y desmontar las piezas de trabajo.
Entre las industrias que emplean habitualmente fresadoras CNC se encuentran la automovilística (diseño de bloques de motor, moldes y componentes diversos), la aeroespacial (turbinas de aviones) y la electrónica (elaboración de moldes y prototipos), además de las dedicadas a la fabricación de maquinaria, instrumental y componentes eléctricos.





Comentarios

  1. Del equipo 1 al equipo 5:
    Su información está muy bien explicada y concisa, en la parte del proceso de fundición estaría mejor si colocarán el proceso con imágenes para qué así sea más entendible. Aquí hay un video en el cual explican el proceso de fundición:

    https://www.youtube.com/watch?v=XFM5tEsMYGw

    ResponderEliminar
  2. Del equipo 1 al equipo 6:
    En general la información que nos han presentado tiene un orden correcto, estaría mejor si colocaran mas imágenes o vídeos para que sea mas entendible . Aquí hay un vídeo donde explica el forjado mecánico:
    https://www.youtube.com/watch?v=JOeGXTUdZzk

    ResponderEliminar
    Respuestas
    1. del equipo 6 al equipo 1:

      gracias por su comentario, este vídeo también les puede ayudar.

      https://www.youtube.com/watch?v=XdBkmDzIWn4

      Eliminar
  3. Del equipo 2 al equipo 6
    Su información está bien solamente falta completar la parte del embutido que está solamente definido y con unos ejemplos quedaría mas claro. Aquí vienen desglosadas las etapas , diferentes tipos de embutido y defectos del mismo : http://materias.fcyt.umss.edu.bo/tecno-II/PDF/cap-333.pdf

    ResponderEliminar
    Respuestas
    1. del equipo 6 al 2:

      gracias por su comentario, en este vídeo se muestran ejemplos del embutido para mejor comprensión del mismo.

      https://www.youtube.com/watch?time_continue=8&v=n-ht_5Ysurc

      Eliminar
  4. Del equipo 2 al equipo 5
    La información está bien estructurada y clara. Solamente para completar un video donde se ve la fundición, colado al alto vacío , centrifugado y precisión. https://www.youtube.com/watch?v=SLDvv6lANjA

    ResponderEliminar
  5. Del equipo 2 al 6
    Para completar el maquinado de CNC en este video hablan brevemente sobre lo que es y lo que te permite una maquina CNC. Posteriormente el proceso para fabricar dos diferentes artefactos. https://www.youtube.com/watch?v=vRR_eADGh4Q

    ResponderEliminar
    Respuestas
    1. del equipo 6 al 2:

      gracias por tu comentario, aquí te dejamos un link para complementar dicha información.

      http://maquinadocnc.com.mx/control-numerico-computarizado/

      Eliminar
  6. Del equipo 1 al equipo 6:
    La información es clara, estaría mejor si colocaran imágenes o videos donde para que fuera más entendible. Aquí hay un video donde explica el troquelado https://www.youtube.com/watch?v=WTO-bZTyzaw

    ResponderEliminar
    Respuestas
    1. del equipo 6 al 1:

      gracias por su comentario, a continuación te dejamos un link de una presentación que habla acerca del troquelado la cual contienen imágenes para complementar este tema.

      https://prezi.com/izsjgo6kdufr/proceso-de-troquelado/

      Eliminar
  7. Este comentario ha sido eliminado por el autor.

    ResponderEliminar
  8. Del equipo 3 al equipo 5
    Me parece bien la información pero hacen falta imágenes que nos muestren de mejor manera los procesos de los que nos están hablando

    ResponderEliminar
  9. Del equipo 3 al 6
    La información es buena pero si se detalla un poco para una mejor comprensión y también pueden agregar un vídeo acerca de los temas vistos para reforzar el aprendizaje

    ResponderEliminar
    Respuestas
    1. del equipo 6 al 3:

      gracias por tu comentario, agregamos algunos videos para complementar.

      https://www.youtube.com/watch?v=XdBkmDzIWn4

      https://www.youtube.com/watch?time_continue=8&v=n-ht_5Ysurc

      Eliminar
  10. excelente plagio me voy aventar, para mi tesis, putos los de los tecnológicos, arriba el poli

    ResponderEliminar

Publicar un comentario

Entradas populares